AGP、AAT及HAP联合细胞因子检测在活动性肺结核中的诊疗价值
International Journal of Laboratory Medicine(2022)
Abstract
目的 探讨α1-酸性糖蛋白(AGP)、α1-抗胰蛋白酶(AAT)及触珠蛋白(HAP)联合细胞因子检测在活动性肺结核中的应用价值,为活动性肺结核的实验室诊断提供参考依据.方法 选取2020年3月至2021年3月昆明市第三人民医院收治的96例结核病患者为研究组,另选同期体检健康者83例作为对照组,比较两组AGP、AAT、HAP及细胞因子水平,评价其在活动性肺结核中的诊断价值.结果 与对照组比较,研究组患者血清中AGP、AAT、HAP、免疫球蛋白A(IgA)、白细胞介素-6(IL-6)、人γ干扰素(IFN-γ)的水平升高、肿瘤坏死因子-α(TNF-α)的水平降低,差异均有统计学意义(P<0.05);其余免疫球蛋白G(IgG)、免疫球蛋白M(IgM)、白细胞介素-1(IL-1)等11种因子的水平在两组间比较差异无统计学意义(P>0.05).对两组差异有统计学意义的7种指标进行受试者工作特征曲线(ROC曲线)分析,结果显示,HAP、AGP、AAT、IgA、IL-6、IFN-γ、T N F-α诊断活动性肺结核的曲线下面积(A U C)分别为0.672、0.678、0.709、0.606、0.664、0.645、0.606,差异有统计学意义(P<0.05),AAT单独检测的诊断效能较高;IL-6+TNF-α 联合检测的诊断效能最高.Spearman相关分析显示,HAP与AGP、AGP与AAT、HAP与AAT之间均呈正相关(P<0.05).结论 HAP、AGP、AAT及IL-6、IFN-γ、TNF-α联合检测诊断活动性肺结核效能较高,值得临床推广应用.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined