急性白血病儿童髂骨骨髓的扩散加权成像与扩散张量成像研究
Journal of Clinical Radiology(2022)
Abstract
目的 探讨扩散加权成像(DWI)及扩散张量成像(DTI)在儿童初发急性白血病髂骨骨髓浸润中的诊断价值.方法 搜集36名健康儿童志愿者(对照组)及27例本院临床确诊初发急性白血病儿童(病例组)为研究对象,对照组按年龄划分为三组:A组(≤5岁),B组(5~10岁),C组(10~ 14岁),其中A组10例,B组15例,C组11例;病例组用同样的方法分组:A'组(≤5岁),B'组(5~10岁),C'组(10~14岁),其中A'组10例,B'组8例,C'组9例.采用GE Singna 1.5 T超导型磁共振扫描仪对所有受试者进行骨盆轴位扫描,扫描序列包括单次激发自旋回波-平面回波DWI (SS-SE-EPI-DWI)扫描序列(b=0,800 s/mm2)及单次激发自旋回波-平面回波DTI(SS-SE-EPI-DTI)扫描序列.原始图据传送到AW4.6工作站,应用Functool软件对图像数据进行后处理,在髂骨最大层面设置6个感兴趣区(ROI),分别测量表观扩散系数(ADC)值及各向异性分数(FA)值.对照组与病例组组间的ADC值及FA值的比较采用两独立样本t检验;绘制ADC值及FA值的受试者工作特征(ROC)曲线、并计算曲线下面积(AUC).结果 对照组A组与病例组A'组间ADC值及FA值比较,差异均有统计学意义(t=2.653,P<0.05;t=4.495,P<0.001);对照组B组与病例组B'组间ADC值及FA值比较,差异均有统计学意义(t=4.604,P<0.001;t-8.709,P<0.001);对照组C组与病例组C'组间ADC值及FA值比较,其中ADC值差异无统计学意义(t=-1.958,P>0.05),FA值差异有统计学意义(t=7.125,P<0.001);ADC值的AUC为0.653(P =0.038);FA值的AUC为0.962(P =0.000).结论 FA值比ADC值敏感性更高,FA值与ADC值相比具有更高的诊断价值.可作为判断急性白血病骨髓浸润及严重程度的一项指标.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2003
被引用92 | 浏览
2007
被引用2 | 浏览
2004
被引用40 | 浏览
2008
被引用2 | 浏览
2002
被引用20 | 浏览
2015
被引用14 | 浏览
2016
被引用27 | 浏览
2019
被引用39 | 浏览
2001
被引用11 | 浏览
2019
被引用26 | 浏览
2020
被引用9 | 浏览
2011
被引用3 | 浏览
2011
被引用7 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper