WeChat Mini Program
Old Version Features

脑外伤严重程度与患者血液生理生化指标相关性分析

Systems Medicine(2022)

Cited 0|Views8
Abstract
目的 探究TBI严重程度与患者血液生理生化指标的关系,以期为不同程度TBI患者入院血液检测时,制定科学检测标准提供理论依据.方法 收集滨洲市人民医院和济南市章丘区中医医院2020年2月-2021年2月收治入院的182例不同程度TBI患者的血液生理生化指标,对其进行回顾性分析.结果 轻型、中型和重型TBI患者的白细胞数分别为(7.30±0.27)×109/L、(9.21±0.39)×109/L和(11.75±0.51)×109/L;中性细胞比率分别为(65.21±1.36)%、(75.35±1.62)%和(83.77±0.90)%;中性粒细胞数分别为(4.90±0.26)×109/L、(7.18±0.38)×109/L 和(9.88±0.44)×109/L;淋巴细胞比率分别为(26.67±1.22)%、(15.75±0.92)%和(10.22±0.74)%;嗜酸性粒细胞比率分别为(1.27±0.16)%、(0.57±0.09)%和(0.16±0.04)%;嗜酸性粒细胞数分别为(0.08±0.01)×109/L、(0.04±0.01)×109/L和(0.02±0.01)×109/L;葡萄糖分别为(5.59±0.24)、(6.26±0.22)、(8.50±0.29)mmol/L,且以上血液指标在3种类型患者中均差异有统计学意义(P<0.05).平均血红蛋白浓度、血红蛋白、红细胞压积、尿素、肌酐、尿酸、和胱抑素c-w在不同性别之间差异有统计学意义(P<0.05);嗜碱性粒细胞数在不同年龄组之间差异有统计学意义(P<0.05);严重型TBI患者入院首次检查的嗜酸性粒细胞、红细胞(RBC)、红细胞压积、肌酐、中性细胞比率以及血红蛋白的水平与入院1周、2周和4周后的检查水平差异有统计学意义(P<0.05),且这种差异随着入院时间的延长而降低.结论 TBI应激状态会使患者部分血液理化指标出现显著变化,且这些变化与患者的性别、年龄和严重程度相关.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined