P-173 Large-scale Simulation of Pregnancy Rate Improvements Using an AI Model for Embryo Ranking
HUMAN REPRODUCTION(2022)
Alife Hlth | Reprod Sci Ctr | Weill Cornell Med | Boston IVF | Shady Grove Fertil | IVF Florida | Ovat Fertil
Abstract
Abstract Study question What is the expected improvement in pregnancy rates using an artificial intelligence (AI) model for embryo ranking compared to manual grading systems? Summary answer A large-scale retrospective bootstrapped analysis shows that use of an AI model for embryo ranking can improve pregnancy rates compared to manual grading. What is known already Embryo evaluation is one of the most important steps of an in vitro fertilization (IVF) procedure. Recently, artificial intelligence (AI) models have been developed to automate embryo analysis and reduce the subjectivity of manual grading. While models are often evaluated in terms of classification accuracy or area under the curve (AUC), a more relevant metric is improvement in pregnancy rates. Here we evaluate a previously developed model using a large-scale bootstrapped analysis of virtual patient pregnancy rates and compare its performance to manual grading. Study design, size, duration Historical, de-identified images of transferred blastocyst-stage embryos and manual morphology grades were collected from 11 IVF clinics in the United States for cycles started between 2015-2020. Images were captured on day 5, 6, or 7 using the inverted microscope prior to biopsy or freeze. A total of 1,776 test set images from 3-fold cross validation were used for this analysis. Participants/materials, setting, methods Embryos were matched by age, PGT status, and race to create 16 distinct categories. Virtual patient panels were created within each category using a random selection of 3-5 embryos. Embryos were re-used across different panels, but each individual panel was unique. Three different manual ranking systems were created incorporating the morphology grade and day of image capture. The AI and one randomly chosen manual ranking system independently selected a top embryo for each panel. Main results and the role of chance On average, 105,263 unique virtual patient panels were constructed from the 1,776 embryos. Within these panels, the AI model and manual ranking system selected different top embryos from each other in 27,860 cases, or 26% of the time. The average pregnancy rate of the top-ranked embryo using manual grading was 53.1%, and the average pregnancy rate of the top-ranked embryo using the AI model was 59.4%. The average pregnancy rate improvement from using the AI model was 6.3%, with a standard deviation of 0.2% measured across 10 repetitions of the simulation with different random seeds. Limitations, reasons for caution The primary limitation is the retrospective nature of this study. Also, this bootstrapped panel study relied on recorded manual morphology grades at the time of embryo transfer or freeze rather than on the actual selection of the top embryo in each panel by an embryologist. Wider implications of the findings Our results demonstrate the potential of using an AI model for embryo ranking in terms of improved pregnancy rates. Results from this large-scale bootstrapped retrospective analysis will help inform the design of future clinical validation studies. Trial registration number not applicable
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest