Simultaneous Operating Temperature and Output Power Prediction Method for Photovoltaic Modules
Energy(2022)
Abstract
Accurate cell temperature and output power prediction are vital for the optimal design and operation of photovoltaic (PV) systems. However, capturing the accurate relationships between cell temperature/circuit parameters and weather conditions is still a challenging task. In this study, a universal radial basis function neural network based hybrid modeling approach is proposed to model the cell temperature and circuit parameters. A simultaneous optimization model with l1 norm penalty is established and a separate parameter estimation strategy is proposed to handle the high computational parameter estimation procedure. The effectiveness of the proposed hybrid modeling approach is validated based on four practical experimental datasets of both commercial and laboratory PV plants. It is thus indicated that the proposed modeling approach could provide a promising potential solution framework for the accurate output power prediction under different PV types and relatively wide weather conditions.
MoreTranslated text
Key words
Photovoltaic,Operating temperature,Output power,Hybrid modeling method,Simultaneous optimization model
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
PROCESSES 2024
被引用3
Hybrid Modeling for Photovoltaic Module Operating Temperature Estimation
IEEE JOURNAL OF PHOTOVOLTAICS 2024
被引用1
ENERGY CONVERSION AND MANAGEMENT 2024
被引用6
A Comprehensive Survey of the Maximum Power Point Condition of Photovoltaic Models
SOLAR ENERGY 2024
被引用0
Energy Conversion and Management 2024
被引用0
Renewable Energy 2024
被引用0
Modeling Solar Power Plants with Daily Data Using Genetic Programming and Equivalent Circuit
IET RENEWABLE POWER GENERATION 2024
被引用0
ENERGY 2025
被引用0
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper