WeChat Mini Program
Old Version Features

RT-3DE评价2型糖尿病患者右心容积功能变化及与血清C肽的相关性

Journal of Electrocardiology and Circulation(2022)

Cited 0|Views0
Abstract
目的 运用实时三维超声心动图(RT-3DE)评价2型糖尿病(T2DM)患者右心容积功能变化与血清C肽的相关性.方法 选取树兰(杭州)医院2019年9月至2021年5月收治并确诊的60例T2DM患者为T2DM组,同期健康体检的60名志愿者为对照组.比较两组受试者右心室常规超声心动图参数(包括右心室内径、右心室面积变化率、三尖瓣收缩期平面位移、三尖瓣收缩期运动峰值速度)、RT-3DE参数[包括右心室舒张末期容积(RVEDV)、右心室收缩末期容积(RVESV)、右心室射血分数(RVEF)],分析T2DM患者右心室RT-3DE参数与血清C肽水平的相关性.结果 T2DM组与对照组上述右心室常规超声心动图参数比较,差异均无统计学意义(均P>0.05).T2DM组患者RVEDV、RVESV均明显高于对照组,RVEF明显低于对照组,差异均有统计学意义(均P<0.05).T2DM患者RVEF与空腹及餐后2 h血清C肽水平均呈正相关(r=0.72、0.74,均P<0.05),RVEDV、RVESV与空腹及餐后2 h血清C肽水平均无相关性(均P>0.05).结论 RT-3DE能早期反映T2DM患者右心室功能受损状态,其右心容积功能参数RVEF与血清C肽水平具有一定相关性,可为临床早期干预提供参考.
More
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined