Aberrant Brain Functional and Structural Developments in MECP2 Duplication Rats
NEUROBIOLOGY OF DISEASE(2022)
Chinese Acad Sci
Abstract
Transgenic animal models with homologous etiology provide a promising way to pursue the neurobiological substrates of the behavioral deficits in autism spectrum disorder (ASD). Gain-of-function mutations of MECP2 cause MECP2 duplication syndrome, a severe neurological disorder with core symptoms of ASD. However, abnormal brain developments underlying the autistic-like behavioral deficits of MECP2 duplication syndrome are rarely investigated. To this end, a human MECP2 duplication (MECP2-DP) rat model was created by the bacterial artificial chromosome transgenic method. Functional and structural magnetic resonance imaging (MRI) with high-field were performed on 16 male MECP2-DP rats and 15 male wildtype rats at postnatal 28 days, 42 days, and 56 days old. Multimodal fusion analyses guided by locomotor-relevant metrics and social novelty time separately were applied to identify abnormal brain networks associated with diverse behavioral deficits induced by MECP2 duplication. Aberrant functional developments of a core network primarily composed of the dorsal medial prefrontal cortex (dmPFC) and retrosplenial cortex (RSP) were detected to associate with diverse behavioral phenotypes in MECP2-DP rats. Altered developments of gray matter volume were detected in the hippocampus and thalamus. We conclude that gain-of-function mutations of MECP2 induce aberrant functional activities in the default-mode-like network and aberrant volumetric changes in the brain, resulting in autistic-like behavioral deficits. Our results gain critical insights into the biomarker of MECP2 duplication syndrome and the neurobiological underpinnings of the behavioral deficits in ASD.
MoreTranslated text
Key words
MECP2 duplication,Multimodal fusion,Rat brain,Brain development,Autistic spectrum disorder (ASD),Magnetic resonance imaging (MRI)
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined