Unbiased Inverse Volume Rendering with Differential Trackers.
ACM Transactions on Graphics(2022)
Ecole Polytech Fed Lausanne EPFL
Abstract
Volumetric representations are popular in inverse rendering because they have a simple parameterization, are smoothly varying, and transparently handle topology changes. However, incorporating the full volumetric transport of light is costly and challenging, often leading practitioners to implement simplified models, such as purely emissive and absorbing volumes with "baked" lighting. One such challenge is the efficient estimation of the gradients of the volume's appearance with respect to its scattering and absorption parameters. We show that the straightforward approach---differentiating a volumetric free-flight sampler---can lead to biased and high-variance gradients, hindering optimization. Instead, we propose using a new sampling strategy: differential ratio tracking , which is unbiased, yields low-variance gradients, and runs in linear time. Differential ratio tracking combines ratio tracking and reservoir sampling to estimate gradients by sampling distances proportional to the unweighted transmittance rather than the usual extinction-weighted transmittance. In addition, we observe local minima when optimizing scattering parameters to reproduce dense volumes or surfaces. We show that these local minima can be overcome by bootstrapping the optimization from nonphysical emissive volumes that are easily optimized.
MoreTranslated text
Key words
differentiable rendering,inverse rendering,volumetric rendering,radiative backpropagation,importance sampling
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined