腹腔镜肾部分切除术后并发症预测模型的建立与分析
Journal of Modern Urology(2022)
Abstract
目的 分析影响腹腔镜肾部分切除术后发生并发症的因素,构建列线图预测模型并验证其准确性.方法 回顾性分析2017年9月-2021年7月在中国科学技术大学附属第一医院进行腹腔镜肾部分切除术的300例患者的临床资料,对患者进行3个月的随访,根据患者术后是否出现并发症将其分为并发症组和无并发症组,分析影响腹腔镜肾部分切除术后并发症发生的危险因素,构建风险预测模型,并验证模型的区分度及准确性.结果 本研究中48例(16.00%)患者在腹腔镜肾部分切除术后出现并发症;肿瘤最深处与肾集合系统或肾窦的距离(N值)、热缺血时间≥30 min、合并糖尿病、术中出血量>50 mL为影响腹腔镜肾部分切除术后并发症的独立危险因素(P<0.05);以此为基础构建预测腹腔镜肾部分切除术后并发症的列线图模型,该模型的H-L拟合度检验结果为χ2=6.527,P=0.413.ROC曲线下面积为0.953,敏感性为89.58%,特异性为90.08%,95%C I:0.92~0.97.结论 N值、热缺血时间≥30 min、合并糖尿病、术中出血量>50 mL为影响腹腔镜肾部分切除术后并发症发生的独立危险因素,以此构建的列线图风险预测模型具有较高的区分度及准确性,可为临床早期干预腹腔镜肾部分切除术后并发症的发生提供依据.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined