基于聚类分析和主成分分析的黄精无机元素特征图谱研究
Journal of Food Safety & Quality(2022)
Abstract
目的 研究不同产地黄精中15 种元素的含量,建立黄精无机元素特征图谱,并对其质量进行综合评价.方法 样品经微波消解后,采用电感耦合等离子体质谱法测定,并采用OriginPro 2021 和SPSS 26.0 对数据进行皮尔逊相关性分析、主成分分析和聚类分析.结果 26 批黄精样品中Fe、Mn、Zn、Sr 含量相对较高,其中Fe含量为23.4~583.8 mg/kg;Mn含量为8.2~258.8 mg/kg;Zn含量为7.5~81.4 mg/kg;Sr含量为10.0~47.8 mg/kg;5 种重金属元素Pb、Cd、As、Hg、Cu 均未超标,Cu 的含量相对较高,平均含量为3.8 mg/kg,5 种重金属元素含量整体变化趋势具有一致性.结论 黄精药材中各元素具有相似的分布形态,具有特征性.主成分分析筛选出Cr、Fe、V、Cd、Mn、Sr 是黄精的特征无机元素.26 批黄精药材的质量差异相对较大,样品中得分最高、质量最好的是浙江江山的黄精(S5~S8),得分比较低的是四川和贵州的黄精药材(S9~S18).聚类分析结果与黄精的产地一致.该研究方法可为黄精的质量控制和鉴别工作提供技术支持和参考.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined