WeChat Mini Program
Old Version Features

Quantifying the Mechanical Properties of Yeast Candida Albicans Using Atomic Force Microscopy-Based Force Spectroscopy

Methods in molecular biology(2023)

School of Chemical Engineering

Cited 1|Views16
Abstract
Fungi can adapt to a wide range of environmental stresses in the wild and host milieu by employing their plastic genome and great diversity in morphology. Among different adaptive strategies, mechanical stimuli, such as changes in osmotic pressure, surface remodeling, hyphal formation, and cell divisions, could guide the physical cues into physiological responses through a complex signaling network. While fungal pathogens require a pressure-driven force to expand and penetrate host tissues, quantitatively studying the biophysical properties at the host-fungal interface is critical to understand the development of fungal diseases. Microscopy-based techniques have enabled researchers to monitor the dynamic mechanics on fungal cell surface in responses to the host stress and antifungal drugs. Here, we describe a label-free, high-resolution method based on atomic force microscopy, with a step-by-step protocol to measure the physical properties in human fungal pathogen Candida albicans.
More
Translated text
Key words
Force Spectroscopy
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined