WeChat Mini Program
Old Version Features

Error Suppression for Arbitrary-Size Black Box Quantum Operations

PHYSICAL REVIEW LETTERS(2023)

Univ Chicago

Cited 5|Views26
Abstract
Efficient suppression of errors without full error correction is crucial for applications with noisy intermediate-scale quantum devices. Error mitigation allows us to suppress errors in extracting expectation values without the need for any error correction code, but its applications are limited to estimating expectation values, and cannot provide us with high-fidelity quantum operations acting on arbitrary quantum states. To address this challenge, we propose to use error filtration (EF) for gate-based quantum computation, as a practical error suppression scheme without resorting to full quantum error correction. The result is a general-purpose error suppression protocol where the resources required to suppress errors scale independently of the size of the quantum operation, and does not require any logical encoding of the operation. The protocol provides error suppression whenever an error hierarchy is respected-that is, when the ancillary controlled-swap operations are less noisy than the operation to be corrected. We further analyze the application of EF to quantum random access memory, where EF offers hardware-efficient error suppression.
More
Translated text
Key words
Quantum Error Correction,Fault-tolerant Quantum Computation,Quantum Computation,Quantum Simulation,Computation
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined