WeChat Mini Program
Old Version Features

血清CRP/ALB、LDH与血钙联合检测对早期急性胰腺炎的预测价值

张同远, 张忆, 陈卫东,张剑林, 王兴宇

wf(2022)

Cited 0|Views3
Abstract
目的 探讨血清C反应蛋白与白蛋白(CRP/ALB)比值、乳酸脱氢酶(LDH)与血钙联合检测对早期急性胰腺炎严重程度的预测价值.方法 选取138例2018.07-2021.06期间于安徽医科大学第一附属医院住院治疗的急性胰腺炎患者资料.将患者分为①MAP及MSAP组(n=100),②SAP组(n=38),共两组.通过单因素分析筛选出与早期AP严重程度相关的指标,再通过多因素分析Logistic回归将独立危险因素筛出.对筛选出的独立因素采用受试者工作特征曲线分析其预测效能.结果 ①SAP组中心率、呼吸、CRP、HCT、D-二聚体、PCT、血淀粉酶、血肌酐、AST、总胆红素、LDH、ALB、CRP/ALB比值较MAP+MSAP组显著增高,ALP轻度降低,血钙显著降低,差异具有统计学意义(P<0.05).②LDH(OR=1.002,95%CI:1.001~1.003)、血钙(OR=0.134,95%CI:0.027~0.676)、CRP/ALB 比值(OR=1.727,95%CI:1.291~2.310)是发生 SAP 的独立危险因素(P<0.05).③CRP/ALB比值、LDH、血钙联合检测预测早期AP严重程度分层的价值最高.结论 CRP/ALB比值、LDH、血钙三者联合检测对早期AP严重程度分层具有较高的预测价值.
More
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined