WeChat Mini Program
Old Version Features

Age-Related Differences in MVEP and SSMVEP-Based BCI Performance

INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2022), PT II(2022)

Chongqing Univ

Cited 60|Views3
Abstract
With the aggravation of the aging society, the proportion of senior is gradually increasing. The brain structure size is changing with age. Thus, a certain of researchers focus on the differences in EEG responses or brain computer interface (BCI) performance among different age groups. Current study illustrated the differences in the transient response and steady state response to the motion checkerboard paradigm in younger group (age ranges from 22 to 30) and senior group (age ranges from 60 to 75) for the first time. Three algorithms were utilized to test the performance of the four-targets steady state motion visual evoked potential (SSMVEP) based BCI. Results showed that the SSMVEP could be clearly elicited in both groups. And two strong transient motion related components i.e., P1 and N2 were found in the temporal waveform. The latency of P1 in senior group was significant longer than that in younger group. And the amplitudes of P1 and N2 in senior group were significantly higher than that in younger group. For the performance of identifying SSMVEP, the accuracies in senior group were lower than that in younger group in all three data lengths. And extended canonical correlation analysis (extended CCA)-based method achieved the highest accuracy (86.39% +/- 16.37% in senior subjects and 93.96% +/- 5.68% in younger subjects) compared with CCA-based method and task-related component analysis-based method in both groups. These findings may be helpful for researchers designing algorithms to achieve high classification performance especially for senior subjects.
More
Translated text
Key words
Age,Brain-computer interface,Steady state motion visual evoked potential,Motion visual evoked potential,Electroencephalogram
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined