TDCOSMO. XII. Improved Hubble Constant Measurement from Lensing Time Delays Using Spatially Resolved Stellar Kinematics of the Lens Galaxy
ASTRONOMY & ASTROPHYSICS(2023)
Univ Chicago
Abstract
Strong-lensing time delays enable the measurement of the Hubble constant (H0) independently of other traditional methods. The main limitation to the precision of time-delay cosmography is mass-sheet degeneracy (MSD). Some of the previous TDCOSMO analyses broke the MSD by making standard assumptions about the mass density profile of the lens galaxy, reaching 2% precision from seven lenses. However, this approach could potentially bias the H0 measurement or underestimate the errors. For this work, we broke the MSD for the first time using spatially resolved kinematics of the lens galaxy in RXJ1131 1231 obtained from the Keck Cosmic Web Imager spectroscopy, in combination with previously published time delay and lens models derived from Hubble Space Telescope imaging. This approach allowed us to robustly estimate H0, e ffectively implementing a maximally flexible mass model. Following a blind analysis, we estimated the angular diameter distance to the lens galaxy Dd = 865 +85 81 Mpc and the time-delay distance D t = 2180 +472 271 Mpc, giving H0 = 77:1 +7:3 7:1 km s 1 Mpc 1 - for a flat cold dark matter cosmology. The error budget accounts for all uncertainties, including the MSD inherent to the lens mass profile and line-of-sight e ffects, and those related to the mass-anisotropy degeneracy and projection e ffects. Our new measurement is in excellent agreement with those obtained in the past using standard simply parametrized mass profiles for this single system (H0 = 78:3 +3:4 3:3 km s 1 Mpc 1) and for seven lenses (H0 = 74:2 +1:6 1:6 km s 1 Mpc 1), or for seven lenses using single-aperture kinematics and the same maximally flexible models used by us ( H0 = 73 :3+5:8 5:8 km s 1 Mpc 1). This agreement corroborates the methodology of time-delay cosmography.
MoreTranslated text
Key words
Deformable Mirror
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined