WeChat Mini Program
Old Version Features

PBL教学法在临床住培生"肩袖损伤"教学中的应用

China Continuing Medical Education(2022)

浙江大学医学院附属第二医院

Cited 0|Views4
Abstract
目的 以问题为导向的教学法(problem-based learning,,PBL)是一种以问题为中心的教学方式,虽然临床教学中已开始采用PBL教学,但在实际运用过程中遇到了许多的问题.方法 随机选取浙江大学医学院附属第二医院骨科2020年9月—2021年3月参加住院医师规范化培训的60名学员作为研究对象,随机分为两组,PBL教学组和传统教学组各30名,以运动医学常见疾病"肩袖损伤"为教学案例,对比分析两种教学方式的教学成果.结果 PBL教学组学生掌握"肩袖损伤"部分知识的学习情况要远高于另一组.根据结果显示对教学过程进行关注和研究,最终发现不论是发现新问题还是上课积极性,PBL教学组的学生表现普遍高于传统方法教学组.通过一段时间的学习之后发现在最后的成绩考核中,PBL教学组学生成绩较好,且相对稳定.结论 PBL教学在临床教学中能够起到很重要的作用.PBL教学法在运动医学教育过程中具有明显的优势,可为今后临床住培生在运动医学教育课程中提供良好的借鉴意义.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined