The Effect of Wave Frequency Drift on the Electron Nonlinear Resonant Interaction with Whistler-Mode Waves
PHYSICS OF PLASMAS(2023)
Univ Calif Los Angeles
Abstract
Electron resonant interaction with electromagnetic whistler-mode waves plays a crucial role for electron flux dynamics in planetary magnetospheres. One of the most intense types of whistler-mode waves consists of chorus waves generated via nonlinear resonant interaction with hot anisotropic electrons and propagating with time-varying (drifting) wave frequency. Electron nonlinear resonant interactions with such waves in a dipole magnetic field are well described analytically within the Hamiltonian approach under the approximation of monochromatic waves (of constant frequency). This paper aims to generalize this description to waves with drifting frequency. We show how frequency drift modifies two main nonlinear resonant effects: phase trapping and phase bunching. The obtained results contribute to the development of the Hamiltonian approach for wave–particle resonant interactions.
MoreTranslated text
Key words
Magnetohydrodynamic Turbulence
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined