Delayed Nitrogen Application after Straw and Charred Straw Addition Altered the Hot Moment of Soil N2O Emissions
European Journal of Soil Science(2023)
China Agr Univ
Abstract
The combination of nitrogen (N) fertilization and straw incorporation has complex influences on soil N transformations and derived nitrous oxide (N2O) emissions. This study aimed to reveal the coupled effects of straw returning forms and N fertilizer management on soil N2O emissions. Here, carbon (C) sources with varied availabilities were supplied by different straw returning forms, including straw, charred straw, and combined application of straw and charred straw. The time gaps between additions of exogenous N and C sources were carried out by managing the timing of N fertilization, including N application simultaneous with or delayed after straw return. Soil N2O emissions under different straw returning forms and their response relationships to soil C, N, microbial biomass, as well as soil pH and oxygen (O-2) were explored. Co-application of straw and N fertilizer provided sufficient C and N sources, enhanced the microbial biomass, and consequently increased N2O emissions. Delayed N fertilization could decouple the response of N2O emissions to straw addition, because of constrained N availability and limited pH decline, which decreased the cumulative N2O emissions significantly. Possibly due to straw induced N immobilization coupled with charred straw induced pH elevation, the combined application of straw and charred straw constrained soil N2O emissions compared with straw only application, regardless of N fertilizer management. By shaping the microbial biomass and soil C, N, and O-2 dynamics, delayed application of N fertilizer could further enhance the inhibition effect of the charred straw and straw combination on soil N2O emissions. Therefore, the varied straw returning forms and the timing of N fertilization could affect the supply of available C and N, influencing the hot moments of N2O emissions, and the joint addition of straw and charred straw with a few weeks delayed N application could possibly reduce the risk of soil N2O emissions from straw return systems. Such mitigation potential should be evaluated further under field conditions.Highlights center dot Delayed N fertilization attenuated the magnitude of N2O emissions after straw additions.center dot Combination of charred straw with straw mitigated N2O emissions, further enhanced by delayed N fertilization.center dot Soil pH was the chief regulator for N2O emissions under different straw returning forms and N application.
MoreTranslated text
Key words
biochar,charred straw,N2O emission factor,soil pH,straw returning forms
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined