Separatrix Parameters and Core Performances Across the WEST L-mode Database
NUCLEAR FUSION(2023)
CEA | Max Planck Inst Plasma Phys | Aix Marseille Univ
Abstract
WEST database analysis shows a correlation of the recycled neutral source around the separatrix with core performances. This observation questions the causality chain between particle source and turbulent transport up to the core in L-mode, high recycling plasmas, an unavoidable phase of all scenarios. The best core performances correlate with the lowest values of the density at the separatrix, n sep , similarly to ASDEX Upgrade (AUG) tokamak and Joint European Torus (JET) tokamak in H-mode (Verdoolaege et al 2021 Nucl. Fusion 61 076006). Reflectometry in the midplane provides n sep , while the temperature at the separatrix, T sep is inferred by the ‘two-point model’ using Langmuir probe data on divertor targets. Lower separatrix resistivity does not correlate with better core performances, unlike H-mode observations (Eich et al 2020 Nucl. Fusion 60 056016). As expected in the presence of an efficient neutral source due to recycling fluxes, n sep correlates with the D recycled particle flux at the divertor measured by visible spectroscopy. Coherently, at a given controlled central line integrated density n ˉ , lower n sep correlates with a larger density gradient around the separatrix as well as a larger global density peaking, n ˉ / ⟨ n ⟩ , measured by interferometry. The latter correlates as well with lower collisionality in the core, similarly to JET and AUG H-modes (Angioni et al 2007 Nucl. Fusion 47 1326). The correlations reported allow phrasing the subsequent causality question: what is the interplay chain between low neutral recycling at the divertor plates, low density at the separatrix, high density peaking at the separatrix, high global density peaking, higher central temperature and better core energy confinement quality? Understanding the causality chain is essential to prepare ITER operation and design DEMO scenarios where the ratio of the divertor leg to the ionization length will be larger and where the pumped flux with respect to the plasma volume will be lower than presently operating tokamaks.
MoreTranslated text
Key words
plasma,tokamak,database,confinement,separatrix
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Maximizing the Ion Temperature in an Electron Heated Plasma: from WEST Towards Larger Devices
NUCLEAR FUSION 2024
被引用3
Calorimetry Measurement for Energy Balance and Energy Distribution in WEST for L-mode Plasmas
NUCLEAR FUSION 2024
被引用1
Modeling Electron Temperature Profiles in the Pedestal with Simple Formulas for ETG Transport
NUCLEAR FUSION 2024
被引用4
Global Analysis of Tungsten Migration in WEST Discharges Using Numerical Modelling
NUCLEAR FUSION 2024
被引用0
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper