Chrome Extension
WeChat Mini Program
Use on ChatGLM

Multi-isocenter VMAT Craniospinal Irradiation Using Feasibility Dose-Volume Histogram-Guided Auto-Planning Technique

Journal of radiation research(2023)SCI 3区SCI 4区

Jiangxi Canc Hosp | Dept Elect Informat Engn

Cited 3|Views8
Abstract
This study aims to propose a novel treatment planning methodology for multi-isocenter volumetric modulated arc therapy (VMAT) craniospinal irradiation (CSI) using the special feasibility dose-volume histogram (FDVH)-guided auto-planning (AP) technique. Three different multi-isocenter VMAT -CSI plans were created, including manually based plans (MUPs), conventional AP plans (CAPs) and FDVH-guided AP plans (FAPs). The CAPs and FAPs were specially designed by combining multi-isocenter VMAT and AP techniques in the Pinnacle treatment planning system. Specially, the personalized optimization parameters for FAPs were generated using the FDVH function implemented in PlanIQ software, which provides the ideal organs at risk (OARs) sparing for the specific anatomical geometry based on the valuable assumption of the dose fall-off. Compared to MUPs, CAPs and FAPs significantly reduced the dose for most of the OARs. FAPs achieved the best homogeneity index (0.092 +/- 0.013) and conformity index (0.980 +/- 0.011), while CAPs were slightly inferior to the FAPs but superior to the MUPs. As opposed to MUPs, FAPs delivered a lower dose to OARs, whereas the difference between FAPs and CAPs was not statistically significant except for the optic chiasm and inner ear_L. The two AP approaches had similar MUs, which were significantly lower than the MUPs. The planning time of FAPs (145.00 +/- 10.25 min) was slightly lower than that of CAPs (149.83 +/- 14.37 min) and was substantially lower than that of MUPs (157.92 +/- 16.11 min) with P < 0.0167. Overall, introducing the multi-isocenter AP technique into VMAT-CSI yielded positive outcomes and may play an important role in clinical CSI planning in the future.
More
Translated text
Key words
craniospinal irradiation,feasibility dose-volume histogram,multi-isocenter,auto-planning,VMAT
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest