WeChat Mini Program
Old Version Features

高氧对幽门螺杆菌的清除作用及基于脂质组学的机制

Chinese Journal of Pharmacology and Toxicology(2023)

西安交通大学第二附属医院

Cited 0|Views23
Abstract
目的 研究高氧对幽门螺杆菌(Hp)的清除作用,并基于脂质组学探讨其可能机制.方法 ①高氧对Hp的清除作用.将过氧化氢300 g·L-1加入生理盐水配制成含氧量为13~416 mg·L-1高氧水溶液.将Hp分为Hp对照组(等体积生理盐水)、枸橼酸铋钾组(7.3 g·L-1)及高氧组(高氧溶液13,26,52,104,208和416 mg·L-1).各组Hp置微需氧环境培养5 d后,紫外分光光度法检测菌落洗脱液在600 nm吸光度(A600 nm)值.蒙古沙鼠ig给予Hp 1×1011 CFU·L-1悬液,每天1次,连续20 d,建立蒙古沙鼠Hp感染模型;选取60只感染模型沙鼠,分为Hp模型组(等体积生理盐水)、Hp模型+高氧(高氧溶液26 mg·L-1)组、Hp模型+三联药物组(克拉霉素8.3 g·L-1、枸橼酸铋钾7.3 g·L-1和替硝唑16.6 g·L-1),选取20只健康沙鼠作为正常对照组(等体积生理盐水),各组分别于给药14 d后及停药14 d后处死半数沙鼠,吉姆萨染色计数胃黏膜Hp数目.②高氧对Hp细胞膜的损伤作用.将Hp分为Hp对照组(等体积生理盐水)、高氧(7,13和26 mg·L-1高氧溶液)组、阿莫西林40 mg·L-1组,SYTO 9/PI染色后使用流式细胞术检测Hp的存活率;BCA与ELISA法分别检测Hp对照组、高氧组胞质蛋白与DNA泄漏量;透射电镜观察高氧26 mg·L-1组、阿莫西林40 mg·L-1组和Hp对照组菌膜完整性.③高氧处理前后Hp脂质种类和含量变化.将Hp分为Hp对照组、高氧40 min和高氧12 h组,高效液相色谱-串联质谱法检测高氧26 mg·L-1处理40 min和12 h后脂质种类及丰度,数据挖掘算法分析筛选差异脂质代谢物.结果 ①高氧浓度依赖性降低菌落洗脱液A600 nm值(P<0.05,P<0.01,r=-0.99).蒙古沙鼠胃黏膜存在Hp定植,表明感染模型建立成功;Hp模型+高氧组沙鼠胃黏膜Hp数目显著低于Hp模型组(P<0.01);②高氧组Hp的存活率显著低于阿莫西林组(P<0.01);透射电镜结果显示,Hp对照组细胞膜完整、透明,胞质均匀分布.高氧组菌膜损伤、破裂、模糊不清,胞质溢出;高氧各组菌体胞质蛋白与DNA泄漏量均显著高于正常对照组(P<0.01).③与Hp对照组相比,高氧12 h组脂质分布具有显著差异(P<0.01).脂质组学分析筛选出2557个差异脂质,其中正、负离子模式下分别有1752和805个;正、负离子模式的上调差异脂质分别为200和85个,下调分别为73和55个,正离子模式差异脂质主要集中于脂肪酰类、甘油磷脂类和多聚乙烯类;负离子模式主要集中于脂肪酰类、固醇脂类和甘油脂类.结论 高氧可清除Hp,其除菌机制与破坏Hp细胞膜的脂质结构相关.
More
Translated text
Key words
Helicobacter pylori,Mongolian gerbils,enriched oxygen,cell membrane,lipidomics
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined