WeChat Mini Program
Old Version Features

气候变化背景下河南烟区气象资源及气象风险因素时空分布特征

Acta Tabacaria Sinica(2023)

中国烟草总公司郑州烟草研究院

Cited 0|Views27
Abstract
[背景和目的]为明确气候变暖背景下,河南烟区气候条件及气象风险因素时空变化特征,及两者之间的相关性.[方法]利用河南省20个县(市、区)2000-2019年气象资料,借助一元线性趋势、Mann-Kendall检验等方法,分析了河南烟区气象资源及气象风险因素时空分布特征.[结果](1)近20年河南烟区烤烟成熟期气候资源发生明显变化,具体表现为:平均气温整体呈升高趋势,以襄城县和内乡县为中心的区域降雨量显著减少,以临颍县和泌阳县为中心的区域光合有效辐射呈增加趋势,以洛宁县、汝州市和方城县为中心的区域平均相对湿度显著减少,以舞阳县和邓州市为中心的区域昼夜温差显著增加.(2)以郏县和灵宝市为中心的区域,在旺长期-成熟前期高温风险相对较高,豫南地区在成熟后期面临一定的高温风险.近年来部分县区烤烟成熟期高温天数显著增加,高温风险的增加不仅与平均气温的升高密切相关,同时与成熟前期降雨量和干旱强度呈显著负相关.(3)以叶县为中心的区域暴雨风险相对较高,近年来暴雨发生频率有降低趋势,主要与成熟前期雨量的减少密切相关.(4)以禹州市和汝州市为中心的区域伸根期干旱风险相对较高,近年来有减轻趋势;各县区旺长期-成熟前期均面临较高的干旱风险,部分县区有增强趋势.[结论]近20年来河南烟区烤烟成熟期气候条件发生较大变化,部分地区高温和干旱风险有进一步增强趋势,暴雨发生频率有所降低.
More
Translated text
Key words
climate change,Henan,flue-cured tobacco,meteorological resources,meteorological risk factors,temporal and spatial distribution
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined