WeChat Mini Program
Old Version Features

风暴潮作用下的大湾区海堤安全设计潮位探究——以伶仃洋河口湾为例

Renmin Zhujiang(2021)

广东省水利水电技术中心

Cited 0|Views2
Abstract
基于伶仃洋河口湾控制站点历年设计频率潮位、风暴潮增水统计、上游洪水来流等分析显示,伶仃洋海域近年0.5%~2.0%设计频率潮位抬升幅度为0.2~1.0 m,风暴潮极值增水都在2.5 m以上,现状相邻设计频率的潮位差不超过0.2 m,风暴潮极值增水与洪水基本不遭遇,与天文潮中潮遭遇概率最大。因此,针对设计频率潮位在河口海域应用中存在相邻频率潮位差过小、强台风期间潮水位跳频严重、不能直接体现风暴潮极值增水在海堤高程设计中的主导作用等问题,提出了海堤风暴潮安全设计潮位的概念,由海域多年平均高潮位与风暴潮最大极值增水叠加组成,概念清晰,使用简单,突出海堤抵御风暴潮灾害的主要功能,计算值与伶仃洋口门、狮子洋及三角洲网河区主要站点2020年复核后的100~200年一遇设计潮位较为接近且略大,证实了其安全可靠,初步分析认为2020年复核后的赤湾站设计频率潮位成果偏大。海堤安全设计潮位的概念可推广应用在海堤达标加固设计、海堤风暴潮安全风险评估以及风暴潮灾害预警及应对等领域。
More
Translated text
Key words
coastal levee,storm surge,the extreme storm surge elevation,astronomical tide,encounter
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined