WeChat Mini Program
Old Version Features

Utilising Electrodermal Activity Sensor Signals to Quantify Nociceptive Response During Movement Activities.

BMC Research Notes(2024)

Cardiff University

Cited 0|Views16
Abstract
Objective With an increasingly ageing population and osteoarthritis prevalence, the quantification of nociceptive signals responsible for painful movements and individual responses could lead to better treatment and monitoring solutions. Changes in electrodermal activity (EDA) can be detected via changes in skin conductance (SC) and measured using finger electrodes on a wearable sensor, providing objective information for increased physiological stress response. Results To provide EDA response preliminary data, this was recorded with healthy volunteers on an array of activities while receiving a noxious stimulus. This provides a defined scenario that can be utilised as protocol feasibility testing. Raw signal extraction, processing and statistical analysis was performed using mean SC values on all participant data. The application of the stimuli resulted in a significant average increase (p < 0.05) in mean SC in four out of five activities with significant gender differences (p < 0.05) in SC and self-reported pain scores and large effect sizes. Though EDA parameters are a promising tool for nociceptive response indicators, limitations including motion artifact sensitivities and lack of previous movement-based EDA published data result in restricted analysis understanding. Refined processing pipelines with signal decomposition tools could be utilised in a protocol that quantifies nociceptive response clinically meaningfully.
More
Translated text
Key words
Electrodermal activity,Sensor data,Nociception,Skin conductance
PDF
Bibtex
收藏
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined