Chrome Extension
WeChat Mini Program
Use on ChatGLM

Illuminating Dark Proteins Using Reactome Pathways.

bioRxiv the preprint server for biology(2023)

Oregon Health & Science University | NYU Langone Health | Ontario Institute for Cancer Research

Cited 2|Views13
Abstract
Limited knowledge about a substantial portion of protein coding genes, known as "dark" proteins, hinders our understanding of their functions and potential therapeutic applications. To address this, we leveraged Reactome, the most comprehensive, open source, open-access pathway knowledgebase, to contextualize dark proteins within biological pathways. By integrating multiple resources and employing a random forest classifier trained on 106 protein/gene pairwise features, we predicted functional interactions between dark proteins and Reactome-annotated proteins. We then developed three scores to measure the interactions between dark proteins and Reactome pathways, utilizing enrichment analysis and fuzzy logic simulations. Correlation analysis of these scores with an independent single-cell RNA sequencing dataset provided supporting evidence for this approach. Furthermore, systematic natural language processing (NLP) analysis of over 22 million PubMed abstracts and manual checking of the literature associated with 20 randomly selected dark proteins reinforced the predicted interactions between proteins and pathways. To enhance the visualization and exploration of dark proteins within Reactome pathways, we developed the Reactome IDG portal, deployed at https://idg.reactome.org, a web application featuring tissue-specific protein and gene expression overlay, as well as drug interactions. Our integrated computational approach, together with the user-friendly web platform, offers a valuable resource for uncovering potential biological functions and therapeutic implications of dark proteins.
More
Translated text
Key words
Protein-Protein Interaction Networks,Human Protein Interactome,Pathway Analysis,Transcriptomics,Phenotypic Profiling
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest