采用CiteSpace可视化分析近20年功能磁共振运用于脑卒中领域的国内发文量现状
Neural Injury and Functional Reconstruction(2023)
北京中医药大学东直门医院
Abstract
目的:应用CiteSpace软件对国内近20年功能磁共振(fMRI)运用于脑卒中领域的研究现状及热点进行可视化分析.方法:以中国知网(CNKI)数据库为数据来源,利用CiteSpace软件对国内近20年脑卒中与fMRI相关的研究进行作者、研究机构及关键词分析.结果:纳入644篇文献,国内运用fMRI在脑卒中领域的研究从2002年开始兴起,呈波浪式上升,至今仍是研究热点.发文量最高的作者是孙莉敏(上海复旦大学).研究机构以高校及其附属医院为主,范围较局限,缺乏机构、区域之间更广泛的交流合作.fMRI在卒中研究中的热点领域主要集中在针刺治疗卒中的研究、卒中后康复的研究、卒中后偏瘫、失语的治疗及作用机制的研究.fMRI数据分析方法如功能连接、功能重组、低频振幅为热门使用的方法.除去主题词外较活跃的高频被引关键词聚类为功能连接、综述、运动想象、头针、高压氧等.结论:脑卒中与fMRI相关的知识图谱研究规律发现其中涉及不同针刺方法治疗、卒中后康复、卒中后遗症治疗及作用机制、功能磁共振数据分析方法等多个方面.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined