无功能垂体腺瘤的垂体相关转录因子表达与临床特征分析
Chinese Journal of Clinical Neurosurgery(2021)
军医大学第二附属医院
Abstract
目的 探讨垂体相关转录因子在无功能垂体腺瘤中的表达情况及其临床意义.方法 收集2013~2019年手术切除的无功能垂体腺瘤组织151例,采用组织芯片技术检测5个垂体相关转录因子(Pit-1、SF-1、GATA2、Tpit、ERα)的表达.结果 5个转录因子均阴性36例,Pit-1阳性91例,SF-1阳性11例,GATA2阳性9例,ERα阳性4例;生长激素(GH)细胞腺瘤53例,多激素细胞腺瘤42例,零细胞腺瘤36例,促性腺激素(GnH)细胞腺瘤11例,促甲状腺激素(TSH)细胞腺瘤9例,各类无功能垂体腺瘤病人的年龄和Ki-67指数无统计学差异(P>0.05),TSH细胞腺瘤体积最小、侵袭性比例最低(P<0.05),多激素细胞腺瘤、GnH细胞腺瘤和零细胞腺瘤体积较大(P<0.05),零细胞腺瘤P53阳性率最低(P<0.05).5个转录因子阳性表达以40~59岁病人多见(P<0.05);Tpit阳性表达以男性多见(P<0.05),其余4个转录因子以女性多见(P<0.05).Pit-1阳性病人血清GH、TSH水平明显增高(P<0.01),ERa阳性病人血清泌乳素水平明显增高(P<0.05),GATA2阳性病人血清TSH水平明显增高(P<0.01),血清促肾上腺皮质激素水平与5个转录因子表达水平无明显关系(P>0.05).结论 垂体相关转录因子可以为临床诊断无功能垂体腺瘤提供新依据,而且其阳性表达与无功能垂体腺瘤病人的临床特征有密切联系.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2018
被引用4 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper