Chrome Extension
WeChat Mini Program
Use on ChatGLM

基于注意力机制的手写体数字识别

LI Bo-yan,ZHANG Yong,YUAN De-rong, XIONG Tang-tang,HE Lang

计算机科学(2022)

江西财经大学

Cited 0|Views10
Abstract
作为模式识别的重要分支,手写体数字识别正置于前所未有的热潮之下,卷积神经网络也被广泛应用于相关研究.针对手写体数字识别在训练过程中容易出现梯度爆炸和梯度弥散等现象导致图像识别准确率低的问题,提出了一种嵌入CBAM(Convolutional Block Attention Module)注意力模块的模型,用于手写体数字识别.在卷积神经网络中嵌入CBAM注意力模块,分别从通道和空间维度上筛选出有效特征,抑制无关特征,增强特征的表达能力,提高模型的识别准确率.为进一步提高网络识别准确率,在整个网络架构中充分应用BN(Batch Normalization)算法,加快模型收敛,从而加强模型的抗过拟合能力.在MNIST数据集上进行实验,结果表明,嵌入CBAM注意力模块网络的总体识别准确率达到了99.87%,与一些传统的卷积神经网络模型相比,识别准确率有显著提升.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
HangSiang Thye, AonoMasaki
Multimedia Tools and Applications 2017

被引用35 | 浏览

A Romero,N Ballas, SE Kahou, A Chassang,C Gatta,Y Bengio
2015

被引用25028 | 浏览

Prabhas Naidu Mahanti, Chennu Chaitanya, Ashwin Koduri, K Krishna Vamsi, B Purna Shashanka Sai,G Bharathi Mohan
2023

被引用1 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文提出一种基于CBAM注意力模块的卷积神经网络模型,通过增强特征表达能力,有效提高了手写体数字识别的准确率,创新点在于引入CBAM模块以优化特征筛选。

方法】:在卷积神经网络中嵌入CBAM注意力模块,从通道和空间维度上进行有效特征筛选和无关特征抑制,同时应用BN算法加速模型收敛。

实验】:在MNIST数据集上进行实验,实验结果表明,该模型总体识别准确率达到99.87%,相较于传统卷积神经网络模型有显著提升。