Hardware-Agnostic Interactive Exascale in Situ Visualization of Particle-In-Cell Simulations.
PROCEEDINGS OF THE PLATFORM FOR ADVANCED SCIENTIFIC COMPUTING CONFERENCE, PASC 2023(2023)
Helmholtz Zentrum Dresden Rossendorf | Oak Ridge Natl Lab | Tech Univ Dresden | Lawrence Berkeley Natl Lab | Univ Delaware | Oak Ridge National Laboratory | CASUS Ctr Adv Syst Understanding | Georgia Tech
Abstract
The volume of data generated by exascale simulations requires scalable tools for analysis and visualization. Due to the relatively low I/O bandwidth of modern HPC systems, it is crucial to work as close as possible with simulated data via in situ approaches. In situ visualization provides insights into simulation data and, with the help of additional interactive analysis tools, can support the scientific discovery process at an early stage. Such in situ visualization tools need to be hardware-independent given the ever-increasing hardware diversity of modern supercomputers. We present a new in situ 3D vector field visualization algorithm for particle-in-cell (PIC) simulations and performance evaluation of the solution developed at large-scale. We create a solution in a hardware-agnostic approach to support high throughput and interactive in situ processing on leadership class computing systems. To that end, we demonstrate performance portability on Summit's and the Frontier's pre-exascale testbed at the Oak Ridge Leadership Computing Facility.
MoreTranslated text
Key words
Scientific visualization,in situ visualization,streamline visualization,portability,exascale,GPU,particle-in-cell simulation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest