Survival after Implementation of a Decision Support Tool to Facilitate Evidence-Based Cancer Treatment.
JCO CLINICAL CANCER INFORMATICS(2023)
Center for Epidemiology & Healthcare Delivery Research
Abstract
PURPOSE:Decision support tools (DSTs) to facilitate evidence-based cancer treatment are increasingly common in care delivery organizations. Implementation of these tools may improve process outcomes, but little is known about effects on patient outcomes such as survival. We aimed to evaluate the effect of implementing a DST for cancer treatment on overall survival (OS) among patients with breast, colorectal, and lung cancer.METHODS:We used institutional cancer registry data to identify adults treated for first primary breast, colorectal, or lung cancer between December 2013 and December 2017. Our intervention of interest was implementation of a commercial DST for cancer treatment, and outcome of interest was OS. We emulated a single-arm trial with historical comparison and used a flexible parametric model to estimate standardized 3-year restricted mean survival time (RMST) difference and mortality risk ratio (RR) with 95% confidence limits (CLs).RESULTS:Our study population comprised 1,059 patients with cancer (323 breast, 318 colorectal, and 418 lung). Depending on cancer type, median age was 55-60 years, 45%-67% were racial/ethnic minorities, and 49%-69% were uninsured. DST implementation had little effect on survival at 3 years. The largest effect was observed among patients with lung cancer (RMST difference, 1.7 months; 95% CL, -0.26 to 3.7; mortality RR, 0.95; 95% CL, 0.88 to 1.0). Adherence with tool-based treatment recommendations was >70% before and >90% across cancers.CONCLUSION:Our results suggest that implementation of a DST for cancer treatment has nominal effect on OS, which may be partially attributable to high adherence with evidence-based treatment recommendations before tool implementation in our setting. Our results raise awareness that improved process outcomes may not translate to improved patient outcomes in some care delivery settings.
MoreTranslated text
Key words
Cancer Treatment Expenses
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined