Sensor-Based Quantification of Peanut Disease Defoliation Using an Unmanned Aircraft System and Multispectral Imagery.
PLANT DISEASE(2024)
Univ Florida
Abstract
Early leaf spot (Passalora arachidicola) and late leaf spot (Nothopassalora personata) are two of the most economically important foliar fungal diseases of peanut, often requiring seven to eight fungicide applications to protect against defoliation and yield loss. Rust (Puccinia arachidis) may also cause significant defoliation depending on season and location. Sensor technologies are increasingly being utilized to objectively monitor plant disease epidemics for research and supporting integrated management decisions. This study aimed to develop an algorithm to quantify peanut disease defoliation using multispectral imagery captured by an unmanned aircraft system. The algorithm combined the Green Normalized Difference Vegetation Index and the Modified Soil-Adjusted Vegetation Index and included calibration to site-specific peak canopy growth. Beta regression was used to train a model for percent net defoliation with observed visual estimations of the variety 'GA-06G' (0 to 95%) as the target and imagery as the predictor (train: pseudo-R2 = 0.71, test k-fold cross-validation: R2 = 0.84 and RMSE = 4.0%). The model performed well on new data from two field trials not included in model training that compared 25 (R2 = 0.79, RMSE = 3.7%) and seven (R2 = 0.87, RMSE = 9.4%) fungicide programs. This objective method of assessing mid-to-late season disease severity can be used to assist growers with harvest decisions and researchers with reproducible assessment of field experiments. This model will be integrated into future work with proximal ground sensors for pathogen identification and early season disease detection.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
MoreTranslated text
Key words
Cercospora arachidicola,Cercosporidium personatum,disease development and spread,foliar disease,fungi,Nothopassalora personata,oilseeds and legumes,Passalora arachidicola,Puccinia arachidis,remote sensing
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined