WeChat Mini Program
Old Version Features

FreeFlux: A Python Package for Time-Efficient Isotopically Nonstationary Metabolic Flux Analysis.

ACS Synthetic Biology(2023)

Natl Renewable Energy Lab

Cited 4|Views16
Abstract
13C metabolic flux analysis is a powerful tool for metabolism characterization in metabolic engineering and synthetic biology. However, the widespread adoption of this tool is hindered by limited software availability and computational efficiency. Currently, the most widely accepted 13C-flux tools, such as INCA and 13CFLUX2, are developed in a closed-source environment. While several open-source packages or software are available, they are either computationally inefficient or only suitable for flux estimation at isotopic steady state. To address the need for a time-efficient computational tool for the more complicated flux analysis at an isotopically nonstationary state, especially for understanding the single-carbon substrate metabolism, we present FreeFlux. FreeFlux is an open-source Python package that performs labeling pattern simulation and flux analysis at both isotopic steady state and transient state, enabling a more comprehensive analysis of cellular metabolism. FreeFlux provides a set of interfaces to manipulate the objects abstracted from a labeling experiment and computational process, making it easy to integrate into other programs or pipelines. The flux estimation by FreeFlux is fast and reliable, and its validity has been confirmed by comparison with results from other computational tools using both synthetic and experimental data. FreeFlux is freely available at https://github.com/Chaowu88/freeflux with a detailed online tutorial and documentation provided at https://freeflux.readthedocs.io/en/latest/index.html.
More
Translated text
Key words
C-13 metabolicflux analysis,isotopic labeling,steady state,transient state,labeling patternsimulation,flux estimation,python package
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined