基于GF-2影像的西北干旱荒漠低扰动区植被覆盖度提取方法研究
Journal of Resources and Ecology(2023)
Beijing Forestry University
Abstract
植被覆盖度是地表植被的重要指示性指标,对营建植被恢复措施具有十分重要的参考价值。在植被覆盖度相关研究中,针对提取方法的研究引起了众多关注。研究表明,植被覆盖度提取方法普适性较差,而现有的相关研究多是分布在湿润、半湿润和半干旱的农用、林用地上,在植被稀疏且以灌草为主的干旱区较为稀缺。为了探究不同方法在西北干旱荒漠低扰动区估测植被覆盖度的精度及适用性,本文基于GF-2多光谱-全色融合影像,提取能有效排除土壤、气象等信息以获取纯净植被信息的6种植被指数(NDVI、SAVI、MSAVI、ARVI、EVI、MVI),分别建立以单一植被指数为自变量的像元二分模型和以多种植被指数为自变量的参数回归模型(岭回归、主成分回归)及非参数回归模型(随机森林回归)。并引入SSE、R2、RMSE三个统计量验证模型精度及五折交叉验证法探测模型是否存在过拟合现象。经过这些方法筛选模型后,应用所选模型反演研究区植被覆盖度。结果表明:(1)多种模型中,EVI指数构建的像元二分模型和随机森林回归模型更适用于研究区的植被覆盖度提取。在应用两模型对整个研究区的植被覆盖度进行反演后结果表现出显著的相关性,进一步验证了这一结论。(2)像元二分模型中的纯裸土、植被像元数值(VISoil和VIVeg)的取值会明显影响模型精度,在实际研究中不应当盲目采用经验值。(3)植被覆盖结果与研究区山脉轮廓近似,表明盖度分布可能受地形因素影响较大,考虑可以将这一方面内容引入到后续的研究中。
MoreTranslated text
Key words
FVC,GF-2,random forest model,regression models
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined