Chrome Extension
WeChat Mini Program
Use on ChatGLM

Combining Super Learner with High-Dimensional Propensity Score to Improve Confounding Adjustment: A Real-World Application in Chronic Lymphocytic Leukemia.

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY(2024)

Center for Real-World Effectiveness and Safety of Therapeutics and the Center for Clinical Epidemiology and Biostatistics | Univ Penn | Northwell Hlth

Cited 1|Views52
Abstract
PURPOSE:High-dimensional propensity score (hdPS) is a semiautomated method that leverages a vast number of covariates available in healthcare databases to improve confounding adjustment. A novel combined Super Learner (SL)-hdPS approach was proposed to assist with selecting the number of covariates for propensity score inclusion, and was found in plasmode simulation studies to improve bias reduction and precision compared to hdPS alone. However, the approach has not been examined in the applied setting. METHODS:We compared SL-hdPS's performance with that of several hdPS models, each with prespecified covariates and a different number of empirically-identified covariates, using a cohort study comparing real-world bleeding rates between ibrutinib- and bendamustine-rituximab (BR)-treated individuals with chronic lymphocytic leukemia in Optum's de-identified Clinformatics® Data Mart commercial claims database (2013-2020). We used inverse probability of treatment weighting for confounding adjustment and Cox proportional hazards regression to estimate hazard ratios (HRs) for bleeding outcomes. Parameters of interest included prespecified and empirically-identified covariate balance (absolute standardized difference [ASD] thresholds of <0.10 and <0.05) and outcome HR precision (95% confidence intervals). RESULTS:We identified 2423 ibrutinib- and 1102 BR-treated individuals. Including >200 empirically-identified covariates in the hdPS model compromised covariate balance at both ASD thresholds. SL-hdPS balanced more covariates than all individual hdPS models at both ASD thresholds. The bleeding HR 95% confidence intervals were generally narrower with SL-hdPS than with individual hdPS models. CONCLUSION:In a real-world application, hdPS was sensitive to the number of covariates included, while use of SL for covariate selection resulted in improved covariate balance and possibly improved precision.
More
Translated text
Key words
bleeding,chronic lymphocytic leukemia,confounding,high-dimensional propensity score,observational study,pharmacoepidemiology,Super Learner
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest