RelKD 2023: International Workshop on Resource-Efficient Learning for Knowledge Discovery.
PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023(2023)
Brandeis Univ
Abstract
Modern machine learning techniques, especially deep neural networks, have demonstrated excellent performance for various knowledge discovery and data mining applications. However, the development of many of these techniques still encounters resource constraint challenges in many scenarios, such as limited labeled data (data-level), small model size requirements in real-world computing platforms (model-level), and efficient mapping of the computations to heterogeneous target hardware (system-level). Addressing all of these metrics is critical for the effective and efficient usage of the developed models in a wide variety of real systems, such as large-scale social network analysis, large-scale recommendation systems, and real-time anomaly detection. Therefore, it is desirable to develop efficient learning techniques to tackle challenges of resource limitations from data, model/algorithm, or (and) system/hardware perspectives. The proposed international workshop on "Resource-Efficient Learning for Knowledge Discovery (RelKD 2023)" will provide a great venue for academic researchers and industrial practitioners to share challenges, solutions, and future opportunities of resource-efficient learning.
MoreTranslated text
Key words
Robust Learning,Meta-Learning,Online Learning,Ensemble Learning,Incremental Learning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined