Impacts of Meteorological Variables and Machine Learning Algorithms on Rice Yield Prediction in Korea
INTERNATIONAL JOURNAL OF BIOMETEOROLOGY(2023)
The Hong Kong University of Science and Technology | Rural Development Administration
Abstract
As crop productivity is greatly influenced by weather conditions, many attempts have been made to estimate crop yields using meteorological data and have achieved great progress with the development of machine learning. However, most yield prediction models are developed based on observational data, and the utilization of climate model output in yield prediction has been addressed in very few studies. In this study, we estimate rice yields in South Korea using the meteorological variables provided by ERA5 reanalysis data (ERA-O) and its dynamically downscaled data (ERA-DS). After ERA-O and ERA-DS are validated against observations (OBS), two different machine learning models, Support Vector Machine (SVM) and Long Short-Term Memory (LSTM), are trained with different combinations of eight meteorological variables (mean temperature, maximum temperature, minimum temperature, precipitation, diurnal temperature range, solar irradiance, mean wind speed, and relative humidity) obtained from OBS, ERA-O, and ERA-DS at weekly and monthly timescales from May to September. Regardless of the model type and the source of the input data, training a model with weekly datasets leads to better yield estimates compared to monthly datasets. LSTM generally outperforms SVM, especially when the model is trained with ERA-DS data at a weekly timescale. The best yield estimates are produced by the LSTM model trained with all eight variables at a weekly timescale. Altogether this study shows the significance of high spatial and temporal resolution of input meteorological data in yield prediction, which can also serve to substantiate the added value of dynamical downscaling.
MoreTranslated text
Key words
Rice yield prediction,Machine learning model,Dynamical downscaling
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined