WeChat Mini Program
Old Version Features

Towards Developing an Automated Chatbot for Predicting Legal Case Outcomes: A Deep Learning Approach.

INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2023, PT I(2023)

Massey Univ

Cited 0|Views16
Abstract
The accurate prediction of legal case outcomes is crucial for effective legal advocacy, which relies on a deep understanding of past cases. Our research aims to develop an automated chatbot for predicting the outcomes of employment-related legal cases using deep learning techniques. We compare and significantly improve on mining the New Zealand Employment Relations Authority (NZERA) dataset, using various deep learning models such as Latent Dirichlet Allocation (LDA) with different activation functions of Recurrent Neural Network (RNN) to determine their predictive performance. Our study’s findings show that SoftSign-based RNN-LDA models have the highest accuracy and consistency in predicting outcomes.
More
Translated text
Key words
Legal advocacy,Predictive models,Semantic analysis,Deep learning
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined