PPO-Based Attitude Controller Design for a Tilt Rotor UAV in Transition Process
DRONES(2023)
Zhejiang Univ
Abstract
The complex aerodynamic changes of the tilt-rotor UAV (TRUAV) in the transition process show strong nonlinearity, which brings a great impact on the stability of the vehicle attitude. This study aims to design a PPO-based RL controller for attitude control in the transition process. A reinforcement-learning PPO approach is used to learn the control strategy by interacting directly with the environment. And the reward function is designed and improved for the transition process. The performance of the proposed controller is tested and compared by simulation. The results show that the PPO algorithm is more suitable for the tilt-rotor transition process control than the A2C algorithm. Our proposed reward function improves the attitude control performance and the designed RL controller has good adaptability to changes in the takeoff weight, the diagonal wheelbase and the tilt rate. This study highlights the effectiveness and potential of reinforcement learning for tilt-rotor UAV transition process attitude control. These findings contribute to the advancement of autonomous flight systems by providing insights into the application of reinforcement learning algorithms. These results have important implications for the development of intelligent flight control systems and could guide future research in this area.
MoreTranslated text
Key words
UAV,flight control,tilt rotor,transition process,reinforcement learning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined