Attribute-enhanced Dual Channel Representation Learning for Session-based Recommendation
PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023(2023)
Huazhong Univ Sci & Technol
Abstract
Session-based recommendation (SBR) aims to predict the anonymous user's next-click items by modeling the short-term sequence pattern. As most existing SBR models generally generate item representations based only on information propagation over the short sequence while ignoring additional valuable knowledge, their expressive abilities are somewhat limited by data sparsity caused by short sequence. Though there have been some attempts on utilizing items' attributes, they basically embed attributes into items directly, ignoring the fact that 1) there is no contextual relationship among attributes; and 2) users have varying levels of attention to different attributes, which still leads to unsatisfactory performance. To tackle the issues, we propose a novel Attribute-enhanced Dual Channel Representation Learning (ADRL) model for SBR, in which we independently model session representations in attribute-related pattern and sequence-related pattern. Specifically, we learn session representations with sequence patterns from the session graph, and we further design an frequency-driven attribute aggregator to generate the attribute-related session representations within a session. The proposed attribute aggregator is plug-and-play, as it can be coupled with most existing SBR models. Extensive experiments on three real-world public datasets demonstrate the superiority of the proposed ADRL over several state-of-the-art baselines, as well as the effectiveness and efficiency of our attribute aggregator module.
MoreTranslated text
Key words
Session-based Recommendation,Graph Neural Networks,Attribute Learning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined