Hybrid CNN-transformer Network for Interactive Learning of Challenging Musculoskeletal Images.
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE(2024)
Shanghai Jiao Tong Univ
Abstract
Background and objectives: Segmentation of regions of interest (ROIs) such as tumors and bones plays an essential role in the analysis of musculoskeletal (MSK) images. Segmentation results can help with orthopaedic surgeons in surgical outcomes assessment and patient's gait cycle simulation. Deep learning-based automatic segmentation methods, particularly those using fully convolutional networks (FCNs), are considered as the state-of-the-art. However, in scenarios where the training data is insufficient to account for all the variations in ROIs, these methods struggle to segment the challenging ROIs that with less common image characteristics. Such characteristics might include low contrast to the background, inhomogeneous textures, and fuzzy boundaries. Methods: we propose a hybrid convolutional neural network - transformer network (HCTN) for semi-automatic segmentation to overcome the limitations of segmenting challenging MSK images. Specifically, we propose to fuse user-inputs (manual, e.g., mouse clicks) with high-level semantic image features derived from the neural network (automatic) where the user-inputs are used in an interactive training for uncommon image characteristics. In addition, we propose to leverage the transformer network (TN) - a deep learning model designed for handling sequence data, in together with features derived from FCNs for segmentation; this addresses the limitation of FCNs that can only operate on small kernels, which tends to dismiss global context and only focus on local patterns. Results: We purposely selected three MSK imaging datasets covering a variety of structures to evaluate the generalizability of the proposed method. Our semi-automatic HCTN method achieved a dice coefficient score (DSC) of 88.46 +/- 9.41 for segmenting the soft-tissue sarcoma tumors from magnetic resonance (MR) images, 73.32 +/- 11.97 for segmenting the osteosarcoma tumors from MR images and 93.93 +/- 1.84 for segmenting the clavicle bones from chest radiographs. When compared to the current state-of-the-art automatic segmentation method, our HCTN method is 11.7%, 19.11% and 7.36% higher in DSC on the three datasets, respectively. Conclusion: Our experimental results demonstrate that HCTN achieved more generalizable results than the current methods, especially with challenging MSK studies.
MoreTranslated text
Key words
Musculoskeletal,Interactive segmentation,Transformer network
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined