Remote Sensing Classification of Temperate Grassland in Eurasia Based on Normalized Difference Vegetation Index (NDVI) Time-Series Data
Sustainability(2023)
Univ Chinese Acad Sci
Abstract
The Eurasian temperate grassland is the largest temperate grassland ecosystem and vegetation transition zone globally. The spatiotemporal distribution and changes of grassland types are vital for grassland monitoring and management. However, there is currently a lack of a unified classification method and standard distribution map of Eurasian temperate grassland types. The Normalized Difference Vegetation Index (NDVI) from remote sensing data is commonly used in grassland monitoring. In this paper, the Accumulated Rate of NDVI Change Index (ARNCI) was proposed to characterize the annual NDVI trend of different temperate grassland types, and four transitional categories were introduced to account for the overlap between them. Based on survey data on the distribution of Eurasian temperate grassland types in the 1980s, the study area was divided into three sub-regions: Northern China, Central Asia, and Mongolia. Regionally, pixel-based ARNCI maps in the 1980s and 1990s were successfully calculated from using NOAA’s AVHRR NDVI time-series products. The ARNCI classification thresholds for different sub-regions were determined, and classification experiments and validation were conducted for each sub-region. The overall accuracies of grasslands types classification for Northern China, Central Asia, and Mongolia in the 1980s were 75.3%, 64.2%, and 84.6%, respectively, which demonstrated that there were variations in classification accuracy in the three sub-regions, and the overall performance was favorable. Finally, distribution maps of Eurasian temperate grassland types in the 1980s and 1990s were obtained, and the spatiotemporal changes of grassland types were analyzed and discussed. The ARNCI method is simple to operate and easy to obtain data, and it can be conveniently used in grassland type classification. The maps firstly address the lack of remote sensing classification maps of Eurasian temperate grassland types, and provide a promising tool for monitoring grassland degradation, management, and utilization.
MoreTranslated text
Key words
normalized difference vegetation index,remote sensing classification,temperate grassland,grassland types,Eurasia
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined