新安江流域2000-2021年NDVI时空变化特征及其影响因素分析
Resources Survey & Environment(2023)
中国地质调查局南京地质调查中心 | 中国人民解放军陆军工程大学
Abstract
新安江流域是长三角地区重要的生态屏障,对该流域的植被覆盖情况进行监测并掌握其动态变化特征,对该区生态环境保护具有重要意义.以新安江流域为研究区,利用2000-2021年MOD13Q1数据,针对归一化植被指数(NDVI)的时空变化特征及其变化的持续性,使用Theil-Sen Median趋势分析、Mann-Kendall检验和Hurst指数等方法进行分析,探讨了 NDVI的变化趋势与岩性建造、土地利用类型之间的关系.结果表明:二十多年以来,新安江流域的年平均NDVI为0.5~0.9,总体呈波动上升趋势,最大值出现在每年7-9月,最小值出现在每年1-3月,呈现"山地高,丘陵和平原较低"的分布特征.NDVI变化类型以改善型为主,改善型区域面积占比>70%,且以持续改善型为主,其中轻微改善型和明显改善型面积占比达85.71%.第四系和白垩纪红层分布区,NDVI严重退化和轻微退化占比较高,NDVI退化情况较严重的土地利用类型为建设用地、草地和耕地.该研究结果可反映新安江流域NDVI的时空变化特征,对于该区生态环境保护与建设具有一定指导意义.
MoreKey words
Xin'an River Basin,spatial and temporal variation,NDVI,trend analysis,vegetation cov-er
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2011
被引用105 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper