WeChat Mini Program
Old Version Features

Strong and Weak Associativity of Weighted Sobolev Spaces of the First Order

RUSSIAN MATHEMATICAL SURVEYS(2023)

Russian Acad Sci

Cited 0|Views5
Abstract
A brief overview of the recent results on the problem of characterization of associative and double associative spaces of function classes, including both ideal and non-ideal structures, is presented. The latter include two-weighted Sobolev spaces of the first order on the positive semi- axis. It is shown that, in contrast to the notion of duality, associativity can be ‘strong’ or ‘weak’. In addition, double associative spaces are further divided into three types. In this context it is established that a weighted Sobolev space of functions with compact support possesses weak associative reflexivity, while the strong associative space of a weak associative space is trivial. Weighted classes of Cesàro and Copson type have similar properties; for these classes the problem us fully investigated, and their connections with Sobolev spaces with power weights are established. As an application, the problem of boundedness of the Hilbert transform from a weighted Sobolev space to a weighted Lebesgue space is considered. Bibliography: 49 titles.
More
Translated text
Key words
function space,dual space,associative space,reflexivity,Sobolev space,Cesaro space,Copson space
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined