面向层次结构数据的增量特征选择
Journal of Frontiers of Computer Science & Technology 계산기과학여탐색(2023)
Abstract
随着大数据时代的到来,数据样本量越来越多,维度越来越高,同时样本标签存在复杂的层次结构关系.采用包含策略,研究了基于依赖度的分层分类增量特征选择,解决了标签具有树结构且标签分布在任意节点的分层分类问题.首先,利用标签之间的层次结构,采用包含策略来缩小负样本空间.其次,使用模糊粗糙集理论,提出了一个基于包含策略的模糊粗糙集模型,设计了一个基于包含策略的依赖度计算算法和一个非增量特征选择算法.基于此,引入增量机制,提出了基于包含策略的依赖度增量更新方法,设计了两个基于两种策略的增量特征选择算法.最后,将此方法与基于兄弟策略的依赖度进行对比,通过实验验证了所提方法的可行性与高效性.
MoreTranslated text
Key words
fuzzy rough sets,dependency degree,hierarchical classification,incremental feature selection,inclusive strategy
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined