Euclid Preparation. XLIV. Modelling Spectroscopic Clustering on Mildly Nonlinear Scales in Beyond-Lcdm Models
ASTRONOMY & ASTROPHYSICS(2024)
Univ Edinburgh | Univ Parma | Univ Milan | Queen Mary Univ London | Univ Paris Saclay | INAF IASF Milano | Rhein Westfal TH Aachen | Univ Federico II | Univ Portsmouth | Univ Torino | Univ Bologna | INAF Osservatorio Astrofis & Sci Spazio Bologna | Univ Geneva | INAF Osservatorio Astron Brera | Max Planck Inst Extraterr Phys | INAF Osservatorio Astrofis Torino | Univ Porto | INAF Osservatorio Astron Roma | INAF Osservatorio Astron Capodimonte | European Space Agcy ESRIN | Univ Claude Bernard Lyon 1 | Aix Marseille Univ | UCB Lyon 1 | Univ Lisbon | INAF Ist Astrofis & Planetol Spaziali | ESA | INFN Padova | Univ Paris Cite | Inst Estudis Espacials Catalunya IEEC | INAF Osservatorio Astron Trieste | INAF Osserv Astron Padova | Univ Oslo | Von Hoerner & Sulger GmbH | Tech Univ Denmark | Max Planck Inst Astron | UCL | CALTECH | Univ Paris | Univ Coll London | Univ Helsinki | NOVA Opt Infrared Instrumentat Grp ASTRON | Univ Bonn | Univ Durham | European Space Agcy ESTEC | Univ Aarhus | Univ Waterloo | Italian Space Agcy | Ctr Spatial Toulouse | Inst Space Sci | Univ Chile | INFN Sez Bologna | Port Informacio Cient | Univ Politecn Cartagena | Univ Groningen | IFPU Inst Fundamental Phys Universe | INFN Bologna | Inst Astrofis Canarias | Inst Astrophys Paris | SISSA | Inst Fis Teor UAM CSIC | Univ Minnesota | ICSC Ctr Nazl Ric High Performance Comp Big Data & | Univ Hawaii | Univ Calif Irvine | INFN | St Marys Univ | Univ Genoa | Univ Oxford | Univ Turku | ARC Ctr Excellence Dark Matter Particle Phys | Univ Western Cape | Stockholm Univ | Univ Grenoble Alpes | Heidelberg Univ | Univ Cambridge | Univ Zurich | Leiden Univ | Princeton Univ | Cosm Dawn Ctr DAWN
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance

被引用159 | 浏览
被引用39 | 浏览
被引用111 | 浏览
被引用179 | 浏览
被引用149 | 浏览
被引用29 | 浏览
被引用30 | 浏览
被引用20 | 浏览
被引用8 | 浏览
被引用11 | 浏览
被引用12 | 浏览
被引用2 | 浏览
被引用16 | 浏览