Assessment of Deep Learning-Based Auto-Contouring on Interobserver Consistency in Target Volume and Organs-at-risk Delineation for Breast Cancer: Implications for RTQA Program in a Multi-Institutional StudyMin Seo Choi,Jee Suk Chang,Kyubo Kim,Jin Hee Kim,Tae Hyung Kim,Sungmin Kim,Hyejung Cha,Oyeon Cho,Jin Hwa Choi,Myungsoo Kim,Juree Kim,Tae Gyu Kim,Seung-Gu Yeo,Ah Ram Chang,Sung-Ja Ahn,Jinhyun Choi,Ki Mun Kang,Jeanny Kwon,Taeryool Koo,Mi Young Kim,Seo Hee Choi,Bae Kwon Jeong,Bum-Sup Jang,In Young Jo,Hyebin Lee,Nalee Kim,Hae Jin Park,Jung Ho Im,Sea-Won Lee,Yeona Cho,Sun Young Lee,Ji Hyun Chang,Jaehee Chun,Eung Man Lee,Jin Sung Kim,Kyung Hwan Shin,Yong Bae KimThe Breast(2023)引用 0|浏览67关键词RTQA,Inter-observer variation,Auto-contouring,Breast cancer,Deep learningAI 理解论文溯源树样例生成溯源树,研究论文发展脉络Chat Paper正在生成论文摘要