直立行走最佳化步态研究
Bulletin of Sport Science & Technology(2023)
陆军工程大学军事基础系军人体能训练与机能评定实验室
Abstract
目的:本研究评定缩髋和挺髋直立行走对步态、表面肌电产生的影响.方法:采用随机交互设计,15名健康男性受试者(平均年龄:20.80±2.04岁;身高:173.99±2.87 cm;体重:68.53±3.21 kg)分别完成2次直立行走(缩髋和挺髋),分别采用Vicon运动捕捉系统和AMTI测力台检测步态参数的变化,并检测表面肌电.结果:与缩髋步态相比,时空数据显示挺髋行走时左侧步频、步速、步长显著增加(P<0.05),步幅时间、单支撑时间显著减少(P<0.05),右侧步幅时间、步长时间、双支撑时间显著减小(P<0.05),其余指标无显著差异(P>0.05);运动学指标显示左侧踝关节内收角度(P<0.05)、髋关节伸角(P<0.01)、膝关节伸角(P<0.05)显著增加;右侧踝关节跖屈角度,髋关节伸角、内收角度,膝关节伸角、内收角度显著增加(P<0.05),其余指标无显著差异(P>0.05);动力学指标左侧髋关节前向剪切力(P<0.01)、髋关节张力、膝关节张力显著增加(P<0.05);右侧踝关节后向剪切力(P<0.01)、髋关节前向剪切力(P<0.01)、右膝关节张力(P<0.05)显著增加.左侧髋关节弯曲力矩(P<0.01)、伸展力矩(P<0.05),膝关节伸展力矩(P<0.01)显著增加;右侧踝关节跖屈力矩(P<0.05)、外展力矩(P<0.05),髋关节弯曲力矩(P<0.05)、伸展力矩(P<0.001)、内收力矩(P<0.01),膝关节伸展力矩(P<0.05)、外展力矩(P<0.05)显著增加.另外,表面肌电显示,股直肌(P<0.01)、股内侧肌(P<0.05)、股外侧肌(P<0.05)sEMG平均值显著增加;股直肌(P<0.01)、股内侧肌(P<0.05)、股外侧肌(P<0.05)iEMG值显著增加;股直肌(P<0.01)、股外侧肌(P<0.05)、胫骨前肌(P<0.05))sEMG峰值显著增加,其余指标无显著差异(P>0.05).结论:整体上,研究表明挺髋行走,髋、膝、踝动力链发生局部调整,下肢激活程度增加,支持力向上传递,依据作用力与反作用力的原理,从而整体上缓解下肢的压力,因此,挺髋直立行走应为最佳化的步态.
MoreKey words
optimization,gait,surface electromyography
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper