WeChat Mini Program
Old Version Features

MedTSS: Transforming Abstractive Summarization of Scientific Articles with Linguistic Analysis and Concept Reinforcement

Nadia Saeed,Hammad Naveed

KNOWLEDGE AND INFORMATION SYSTEMS(2024)

National University of Computer and Emerging Sciences (NUCES-FAST)

Cited 0|Views9
Abstract
This research addresses the limitations of pretrained models (PTMs) in generating accurate and comprehensive abstractive summaries for scientific articles, with a specific focus on the challenges posed by medical research. The proposed solution named medical text simplification and summarization (MedTSS) introduces a dedicated module designed to enrich source text for PTMs. MedTSS addresses issues related to token limits, reinforces multiple concepts, and mitigates entity hallucination problems without necessitating additional training. Furthermore, the module conducts linguistic analysis to simplify generated summaries, particularly tailored for the complex nature of medical research articles. The results demonstrate a significant enhancement, with MedTSS improving the Rouge-1 score from 16.46 to 35.17 without requiring additional training. By emphasizing knowledge-driven components, this framework offers a distinct perspective, challenging the common narrative of ’more data’ or ’more parameters.’ This alternative approach, especially applicable in health-related domains, signifies a broader contribution to the field of NLP. MedTSS serves as an innovative model that not only addresses the intricacies of medical research summarization but also presents a paradigm shift with implications for diverse domains beyond its initial scope.
More
Translated text
Key words
Scientific journal articles,Summarization, data processing,Pre-trained models,Simplification,Entity hallucination
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined