Potential Outcome Simulation for Efficient Head-to-head Comparison of Adaptive Dose-Finding Designs
Biometrics(2025)
Statistical Innovation | Early Oncology Statistics
Abstract
Dose-finding trials are a key component of the drug development process and rely on a statistical design to help inform dosing decisions. Triallists wishing to choose a design require knowledge of operating characteristics of competing methods. This is often assessed using a large-scale simulation study with multiple designs and configurations investigated, which can be time-consuming and therefore limits the scope of the simulation. We introduce a new approach to the design of simulation studies of dose-finding trials. The approach simulates all potential outcomes that individuals could experience at each dose level in the trial. Datasets are simulated in advance and then the same datasets are applied to each of the competing methods to enable a more efficient head-to-head comparison. In two case-studies we show sizeable reductions in Monte Carlo error for comparing a performance metric between two competing designs. Efficiency gains depend on the similarity of the designs. Comparing two Phase I/II design variants, with high correlation of recommending the same optimal biologic dose, we show that the new approach requires a simulation study that is approximately 30 times smaller than the conventional approach. Furthermore, advance-simulated trial datasets can be reused to assess the performance of designs across multiple configurations. We recommend researchers consider this more efficient simulation approach in their dose-finding studies and we have updated the R package escalation to help facilitate implementation.
MoreTranslated text
Key words
Clinical Implementation,Experimental Design,Optimization,Robust Parameter Design,Multi-response Optimization
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话