An Alternating Direction Multiplier Method with Variable Neighborhood Search for Electric Vehicle Routing Problem with Time Windows and Battery Swapping Stations
APPLIED SOFT COMPUTING(2024)
Kunming Univ Sci & Technol
Abstract
This paper studies a real-world electric vehicle routing problem (EVRP). Specifically, it is an EVRP with time windows and battery swapping stations (EVRP_TWBSS). The EVRP_TWBSS considers the routing of electric vehicles (EVs), the determination of each electric vehicle’s battery level, and the selection of battery swapping stations. The criterion of EVRP_TWBSS is to minimize the operating costs. To simplify the structure of model, a time-discrete and multi-commodity flow model based on extended state-space-time network (TMFM_ESSTN) is established. Meanwhile, an alternating direction multiplier method with variable neighborhood search (ADMM_VNS) is presented to address the TMFM_ESSTN. In ADMM_VNS, the augmented lagrangian relaxation (ALR) model constructed from the TMFM_ESSTN is decomposed and linearized to a series of least cost vehicle routing subproblems through the linear augmented lagrangian relaxation (LALR) decomposed technique. Then, each subproblem is iteratively solved by using the dynamic programming and two special designed VNS strategies in ADMM_VNS iterative framework. The solution’s quality can be controlled to a certain extent through monitoring the gap between the lower and upper bounds obtained after each iteration. Test results on instances with different scales and a real-world instance based on partial road network in Kunming City demonstrate that ADMM_VNS can achieve smaller gaps and better solutions than several state-of-the-art algorithms. In which, ADMM_VNS can reduce the optimal gap by up to 2.27% compared to the other state-of-the-art algorithms in small-scale instances. The gap of ADMM_VNS is calculated based on the lower bound and the upper bound in the large-scale instances and the real-world instance are 10.36% and 1.57%, respectively.
MoreTranslated text
Key words
Alternating direction multiplier method,Variable neighborhood search strategy,State-space-time network,Electric vehicle routing problem,Augmented lagrangian relaxation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined